報(bào)告題目:Dynamics for a three-species predator-prey model with density-dependent
motilities
報(bào)告人:穆春來(重慶大學(xué),教授、博導(dǎo))
報(bào)告時(shí)間:2021年10月30日16:00-18:00
報(bào)告地點(diǎn):明理樓C302B
摘要: This talk deals with a general cross-diffusion system modeling the dynamics
Behavior of two predators and one prey with signal-dependent diffusion and sensitivity subject to homogeneous Neumann boundary conditions. Firstly, in light of some L^p-estimate techniques, we rigorously prove the global existence and uniform boundedness of positive classical solutions in any dimensions with suitable conditions on motility functions and the coefficients of logistic source. Moreover, by constructing some appropriate Lyapunov functionals, we further establish the asymptotic behavior of solutions to a specific model with Lotka-Volterra type functional responses and density-dependent death rates for two predators as well as logistic type for the prey. Our results not only generalize the previously known one, but also present some new conclusions.
報(bào)告人簡介:穆春來教授是教育部新世紀(jì)優(yōu)秀人才、國家一流專業(yè)負(fù)責(zé)人、市學(xué)術(shù)技術(shù)帶頭人、市數(shù)學(xué)會(huì)副理事長。2019獲教育部自然科學(xué)獎(jiǎng)二等獎(jiǎng)、2016獲重慶市自科獎(jiǎng)二等獎(jiǎng)、2014獲國家教學(xué)成果二等獎(jiǎng)。承擔(dān)國家自科基金、市重點(diǎn)基金等20余項(xiàng)。從事非線性偏微分方程和生物數(shù)學(xué)研究,在“M3AS、J. Diff. Eq.、J. Sci. Comput.、中國科學(xué)”等權(quán)威期刊發(fā)表論文200余篇。
熱烈歡迎全校師生參加學(xué)術(shù)交流!
舉辦單位:科研處、理學(xué)院、人工智能研究院