Abstract
報告題目:Rate-Invariant Analysis of Trajectories on Manifolds
報告人:蘇敬勇(美國德州理工大學,助理教授/博導)
時間:2018年5月21日 16:30-17:30
地點:明理樓A514
Abstract: In this research we proposed a comprehensive framework for registration and analysis of manifold-valued processes. Functional data analysis in Euclidean spaces has been explored extensively in literature. But we study a dierent problem in the sense that functions to be studied take values on nonlinear manifolds, rather than in vector spaces. Manifold-valued data appear frequently in shape and image analysis, computer vision, biomechanics and many others. The non-linearity of the manifolds requires development of new methodologies suitable for analysis of manifold-valued data. We propose a comprehensive framework for joint registration and analysis of multiple manifold-valued processes. The goals are to take temporal variability into account, derive a rate-invariant metric and generate statistical summaries (sample mean, covariance etc.), which can be further used for registering and modeling multiple trajectories.
報告人簡介:蘇敬勇,美國德州理工大學助理教授,博士生導師。2006年畢業于哈爾濱工業大學電子工程與自動化學院獲得學士學位;2008年畢業于該學院獲得碩士學位。2013年畢業于佛羅里達州立大學統計系獲得博士學位。2013年至今,在德州理工大學數學與統計系任助理教授。蘇敬勇博士的研究方向為:對于來源于計算機視覺、醫學成像以及生物測定學等領域具有復雜結構的數據,開發算法與統計工具,并建立模型來對其進行分析。所研發的模型主要用于登記和隨后分析功能性和形狀數據,同時也用于基于黎曼幾何原理的流形上的軌跡。目前在研一項受美國自然科學基金資助的項目(NSF DMS-1513420 )。
熱烈歡迎全校師生參加學術交流!
舉辦單位:理學院 科研處