報告題目:Photon-phonon co-driven catalysis for methane transformation
報告人:唐軍旺 歐洲科學院院士、博導、教授
報告時間:8月7日(星期三) 15:00-16:30
報告地點:明理樓B306報告廳
報告人簡介:
唐軍旺院士任清華大學化工系工業催化中心創建主任,清華首位碳中和講席教授。唐教授是歐洲科學院院士(the Academy of Europe),英國科學院-利弗休姆資深研究員(Royal Society-Leverhulme Trust Senior Research Fellow), 比利時歐洲科學院院士 (Fellow of European Academy of Sciences),英國皇家化學會會士(Fellow of RSC),英國材料、礦物和采礦協會會士(Fellow of IMMM)和中國化學會榮譽會士。曾任倫敦大學學院(UCL,QS世界大學排名過去15以來一直位列世界前10名)大學材料中心主任多年。其在低碳能源催化材料的開發,光和熱協同催化活化小分子(包括水分解制氫,合成氨,二氧化碳轉化,甲烷轉化等),以及微波催化方面(塑料的催化循環利用)具有很深厚的理論基礎和研究經驗。已在國際雜志Nature Catalysis, Nature Energy, Nature Materials, Nature Sustainability, Nature Reviews Materials, Chemical Reviews, Chem. Soc. Rev.等能源和化學領域期刊共發表了>250篇文章.同時是5個國際雜志的主編/編輯或者副主編,包括Applied Catalysis B(影響因子24), Journal of Advanced Chemical Engineering, Chin J. Catal.(催化學報)和Carbon Future等。
報告內容摘要:
As underlined in the COP26, methane as a greenhouse gas is nearly 25 time more potent than CO2while its reserve is much more than the sum of coal, oil and natural gas. Thus methane conversion not only involves the environmental issue but more importantly is regarded as the most promising pathway for high-value chemical synthesis. However CH4activation is energy intensive and kinetically very sluggish so that methane activation is regarded as the “holy grail” in the catalytically chemical process [1]. Photocatalysis provides a cost-efficient potential to activation of such small molecule under very mild conditions, while to achieve the potential is a huge challenge [2].
Stimulated by our research outcomes on the charge dynamics, which reveal that the low reaction efficiency is due to fast charge recombination and large bandgap of a semiconductor [3], we developed novel material strategies for photocatalytic methane conversion. Highly dispersed atomic level iron on TiO2shows an excellent activity for methane conversion, resulting into ~97% selectivity towards alcohols operated under ambient conditions by a one-step chemicalprocess [4].The dominating function of the iron species has also been investigated in detail. C1 oxygenates can also be produced with nearly 100% selectivity by oxide photocatalyts due to the synergy between Au and Cu cocatalysts loaded on ZnO [5]. Furthermore, we coupled photons with phonons to co-drive catalytic methane conversion to C2 over Au loaded TiO2, achieving the benchmark results in this area [6]. Finally for the first time, we demonstrated the photon-phonon co-driven catalysis for methane to formaldehyde with a nearly 90% selectivity [7].
References:
1) Li, X. Wang, C., Tang, J.Nature Reviews Materials,2022,7, 617–632.
2) Thangamuthu, L., Ruan, Q., Ohemeng, P.S., Luo, L, Jing, D., Godin, R., Tang, J.,Chemical Reviews,2022,122 (13),11778-11829.
3) Tang, J. Durrant J. R., Klug,D. R .,J. Am. Chem. Soc.,2008,130(42) : 13885-13891.
4) Xie, J., Jin, R., Li, A., Bi, Y., Sankar, G., MaD., Tang, J.Nature Catalysis,2018, 1: 889-896.
5) Luo, L., Gong, Z., Xu, Y., Ma, J., Liu, H., Xing, J., Tang, J.,Journal of the American Chemical Society,2022, 144, 2, 740–750.
6) Li, X., Li, C., Xu, Y., Liu, Q., Bahri, M., Zhang, L., Browning, N.D., Cowan,A.J., Tang, J.,Nature Energy,2023,8, 1013–1022.
7) Xu, Y. Wang, C., Li, X., Xiong, L.,…Tang, J.,Nature Sustainability,2024,DoI:10.1038/s41893-024-01401-y.
主辦單位:新能源與材料學院/光伏新能源現代產業學院
油氣藏地質及開發工程全國重點實驗室
能量轉換與儲存先進材料四川省國際科技合作基地
四川省玄武巖纖維復合材料開發及應用工程技術研究中心
四川省頁巖氣高效開采先進材料制備技術工程研究中心
氫能制取與高效利用重點實驗室
成都市科技青年聯合會材料能源專委會
科學技術發展研究院