報告題目:Adaptive-Coefficient Finite Difference Frequency Domain Method for Time-Fractional Diffusive-Viscous Wave and Cattaneo Equations with Absorbing Boundary Conditions
報 告 人:曹建雄 副教授
報告時間:2024年6月17日15:00-17:00
報告地點:明理樓C302B
報告人簡介:
曹建雄,蘭州理工大學(xué)副教授,碩士生導(dǎo)師,甘肅省知識產(chǎn)權(quán)專家?guī)?、甘肅省慶陽市數(shù)字經(jīng)濟(jì)發(fā)展咨詢專家?guī)斐蓡T。主要從事地反常擴(kuò)散過程的分?jǐn)?shù)階偏微分方程建模、數(shù)值算法及其在非常規(guī)油氣勘探、高放廢物深地處置等領(lǐng)域的應(yīng)用以及基于深度學(xué)習(xí)的偏微分方程數(shù)值解法等研究,先后在FCAA、JCAM、Chaos、JSC、Journal of Geophysics and Engineering等期刊發(fā)表學(xué)術(shù)論文20余篇,主持國家自然科學(xué)基金青年項目、地區(qū)項目、專項、國家國防科工局國防基礎(chǔ)科研、甘肅省自然科學(xué)基金,甘肅省教育廳青年博士基金,蘭州理工大學(xué)紅柳優(yōu)秀青年人才計劃等課題8項。
報告內(nèi)容摘要:
The time-fractional Cattaneo (TFC) equation is a practical tool for simulating anomalous dynamics in physical diffusive processes, the diffusive-viscous wave (DVW) equation arises in a variety of applications in geophysics, and it plays an important role in seismic exploration. However, the existing numerical methods for the TFC equation generally deal with the Dirichlet boundary conditions.
In this talk, I will first introduce a time-fractional diffusive-viscous wave (TFDVW) equation, then present adaptive-coefficient (AC) finite-difference frequency-domain (FDFD) method respectively for solving TFDVW equation and TFC equation with absorbing boundary condition as a complex-frequency-shifted (CFS) perfectly matched layer (PML) .
主辦單位:理學(xué)院、人工智能研究院、非線性動力系統(tǒng)研究所
數(shù)理力學(xué)研究中心 、科學(xué)技術(shù)發(fā)展研究院