報(bào)告題目:Immersed Finite Element Methods for Three-Dimensional Interface Problems
報(bào)告人: 張旭 美國(guó)俄克拉荷馬州立大學(xué)副教授,博導(dǎo)
報(bào)告時(shí)間:2024年6月17日10:30-12:00
報(bào)告地點(diǎn):明理樓C302B
報(bào)告人簡(jiǎn)介:
張旭,美國(guó)俄克拉荷馬州立大學(xué)副教授。2005年和2008年在四川大學(xué)數(shù)學(xué)學(xué)院分別獲得學(xué)士和碩士學(xué)位,2013年在美國(guó)弗吉尼亞理工大學(xué)獲得博士學(xué)位。2013-2016年在美國(guó)普渡大學(xué)做博士后。2016年入職密西西比州立大學(xué)擔(dān)任助理教授。2019年起就職俄克拉荷馬州立大學(xué),2022年晉升副教授并獲終身教職。張旭教授的研究領(lǐng)域是數(shù)值偏微分方程,研究問(wèn)題包括界面問(wèn)題的有限元方法,自適應(yīng)算法,超收斂分析等。自2017年起他主持多項(xiàng)美國(guó)自然科學(xué)基金的科研項(xiàng)目。他的研究成果在SINUM, SISC, JCP, CMAME, JSC 等期刊發(fā)表論文30多篇,并有超過(guò)1200次的同行引用。他現(xiàn)擔(dān)任SIAM美國(guó)中部分會(huì)主席。
報(bào)告內(nèi)容摘要:
Interface problems arise in many applications in science and engineering. Partial differential equations (PDEs) are often used to model interface problems. Solutions to these PDE interface problems often involve kinks, singularities, discontinuities, and other non-smooth behaviors. The immersed finite element method (IFEM) is a class of numerical methods for solving PDE interface problems with unfitted meshes. In this talk, I will introduce recent advances in developing and analyzing several IFEMs for solving 3D interface problems. The proposed method can be utilized on interface-unfitted meshes even if the interface possesses an arbitrary shape. The new IFE space is isomorphic to the standard finite element space, and the isomorphism is stable with respect to the interface location. The IFE method is proven to maintain optimal convergence in both the energy norm and the L2 norm. Numerical examples will be provided to verify our theoretical results and demonstrate the applicability of this method in tackling some real-world 3D interface models.
主辦單位:理學(xué)院、人工智能研究院、非線(xiàn)性動(dòng)力系統(tǒng)研究所
數(shù)理力學(xué)研究中心 、科學(xué)技術(shù)發(fā)展研究院